
Solutions
Ontario Mathematics Competition
2025



1. Compute the value of 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10.

(A) 45 (B) 55 (C) 61 (D) 62 (E) 65

proposed by: Daniel Chen

Solution:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
10(11)

2

= (B) 55 .

2. What is the second smallest four-digit number divisible by 367?

(A) 1057 (B) 1101 (C) 1196 (D) 1278 (E) 1468

proposed by: Zheng Wang

Solution: Since ⌈ 1000
367 ⌉ = 3, the second smallest four-digit number divisible by 367 is 367 ·4 =

(E) 1468 .

3. The operator λ is defined so that for any integers a and b, we have aλb = a2 + b.
If (xλ8)λ89 = 2025, what is the value of x?

(A) 6 (B) 7 (C) 10 (D) 44 (E) 1928

proposed by: Daniel Chen

Solution: We have

(xλ8)λ89 = 2025

(x2 + 8)2 + 89 = 2025

(x2 + 8)2 = 1936.

Since x2 + 8 > 0, we have x2 + 8 = 44 =⇒ x2 = 36. Checking the answer choices, (A) 6 is

the only valid x.

4. There are 90 students in a class. 6 of them like neither apples or bananas, and 15 of them
like both apples and bananas. If there is at least one person who only likes bananas, what
is the difference between the largest and smallest possible amount of people who do not like
bananas?

(A) 48 (B) 56 (C) 68 (D) 76 (E) 78

proposed by: Elaine Li

Solution: We see that in the class, 90 − 6 − 15 = 69 students like exactly one of apples or
bananas. The number of people who do not like bananas is the sum of the people who like
neither plus the ones who only like apples. The number of people who like neither is constant,
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so it doesn’t matter. The most amount of people who only like apples is 68, since we need to
have one person who only likes bananas. The least amount of people who only like apples is

0. Thus, the difference is 68− 0 = (C) 68 .

5. If the lines y = 3x+ b and y = 3− 5x intersect at a point (p, q) such that p+ q = 11, find the
value of b.

(A) − 3 (B) 1 (C) 7 (D) 19 (E) 25

proposed by: Daniel Chen

Solution: Since (p, q) is on y = 3− 5x, we know q = 3− 5p. Combined with p+ q = 11, we

find that the desired point is (−2, 13). Thus, b = q − 3p = (D) 19 .

6. Each of the 6 faces of a cube is randomly labelled with a distinct integer from 1 to 6, inclusive.
What is the probability that any two opposite faces are labelled with integers that sum to 7?

(A)
1

6
(B)

1

12
(C)

1

15
(D)

1

24
(E)

1

30

proposed by: Leo Wu

Solution: The probability that 1 is opposite 6 is 1/5. Of the remaining 4 faces, the probability
that 2 is opposite 5 is 1/3. After these are locked in place, 3 is forced to be opposite 4. Therefore

the answer is (C) 1/15 .

7. The cube ABCDEFGH has side length 1, as shown in the diagram below. Find the volume
of the solid ACFEH.

(A)
1

4
(B)

1

3
(C)

2

5
(D)

4

9
(E)

1

2

proposed by: Elaine Li

Solution: Note that the volume of the solid ACFEH is equal to the volume of cube
ABCDEFGH subtracted by four times the volume of tetrahedron ADCH. Since the volume
of the cube is 13 = 1 and the volume of a single tetrahedron is 1

3 · 1
2 · 1 = 1

6 , the answer is

1− 3 · 1
6 = (E) 1

2 .
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8. Let a1, a2, a3, a4, a5, a6, a7 be seven pairwise distinct positive integers that form a geometric
sequence. Given that the number of positive divisors of each of the numbers a1 and a7 is 7.
What is the total number of positive divisors of a4?

(A) 7 (B) 8 (C) 12 (D) 16 (E) 49

proposed by: Terry Yang

Solution: Note that a1 = p6 and a7 = q6, where p and q are distinct primes. The common
ratio of the considered geometric sequence is q

p . Thus, it follows that a4 = p3q3. Therefore,

the number of divisors of a4 is (3 + 1)(3 + 1) = (D) 16 .

9. The Fibonacci numbers are defined as F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for all integers
n > 2. Let S be the value of the infinite series

1

F1
+

1

F2
+ · · ·

where Fn is the n-th Fibonacci number. In which interval does S lie in?

(A) [2, 3) (B) [3, 4) (C) [4, 5) (D) [5, 6) (E) [6, 7)

proposed by: Christopher Li

Solution: The answer is (B) [3, 4) . Firstly,

S >
1

1
+

1

1
+

1

2
+

1

3
+

1

5
> 3.

We have
Fn+1

Fn
= 1 +

Fn−1

Fn
= 1 +

Fn−1

Fn−1 + Fn−2
≥ 1 +

Fn−1

2Fn−1
=

3

2
.

We get

1

Fn
≤ Fn−1

Fn
· Fn−2

Fn−1
· · · F2

F3
≤
(
2

3

)n−2

.

Thus,

S ≤ 1 +

(
1 +

2

3
+

4

9
+ · · ·

)
= 4.

But equality cannot occur, so S ∈ [3, 4).

10. How many permutations (a, b, c, d, e, f, g, h) of (1, 2, 3, 4, 5, 6, 7, 8) satisfy

1 < a < b < c > d > e > f < g < h < 8?

(A) 45 (B) 90 (C) 120 (D) 180 (E) 240

proposed by: Leo Wu

Solution: Note that c = 8 and f = 1 since they cannot fit anywhere else. Once we select
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the unordered pairs (a, b), (d, e), (g, h) the inequalities uniquely determine the permutation.
Therefore the answer is

6!

(2!)3
= (B) 90 .

11. In the given figure, the area of the square is 60. By connecting each vertex with the midpoint
of the opposite edge, we obtain an octagon. What is the area of this region?

(A) 10 (B)
50

9
(C) 6

√
2 (D) 5 + 3

√
2 (E) 12

proposed by: Lei He

Solution:

Label points as shown in the above diagram. We wish to find the ratio x = AB/BC. Note
that from △GAC ∼ △FDC, we have

CA

CD
= 2

AB +BC

BD −BC
= 2

1 + x

x− 1
= 2

x = 3.

Since △ABF ∼ △BEC, we have

[BEC] =
1

9
[ABF ] =

1

9
· 1
8
· 60 =

5

6
.
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We also know EC =
√
60
3 . Since the octagon can be divided into a square and 4 copies of

△BEC, its total area is

4 · 5
6
+

(√
60

3

)2

= (A) 10 .

12. Suppose that f(x) and g(x) are two quadratic polynomials that satisfy the following conditions:

• The first intersection point between f(x) and g(x) is the vertex of f(x) and lies on the
y-axis.

• The second intersection point between f(x) and g(x) is the vertex of g(x) and lies on the
x-axis.

• The graph of f(x) can be obtained by rotating g(x) about the point (2, 3).

What is the value of f(1) + g(1)?

(A)
27

8
(B)

9

2
(C) 6 (D) 9 (E)

23

4

proposed by: Daniel Chen

Solution: Let (0, a) be the vertex of the first quadratic and (b, 0) be the vertex of the second
quadratic.

Note that the polynomials must be facing different directions, so one opens upwards and the
other opens downwards. Therefore, the graph of f(x) is a 180 degree rotation of g(x) around
(2, 3). It follows that the midpoint of (0, a) and (b, 0) is (2, 3), so a = 6 and b = 4.

Consider the polynomial h(x) = f(x)+g(x)
2 . Since the leading coefficients of f(x) and g(x) are

negations of each other, h(x) is a linear polynomial. Also, h(x) passes through (0, a) and (b, 0).
We find that h(x) = − 3

2x+ 6. Thus,

f(1) + g(1) = 2h(1) = (D) 9 .

13. Bowl A contains 147 grams of salt dissolved in 4L of water, whereas Bowl B only contains 3L
of pure water. Charles first pours 1L of the water in bowl A to B, then pours 1L of the water
in bowl B back to A. After repeating this action an infinite amount of times, how much salt is
contained in bowl A?

(A) 73.5 (B) 84 (C) 94.5 (D) 105 (E) 126

proposed by: Oscar Zhou

Solution: Let the amount of salt at equilibrium (after infinite exchanges) in bowls A and B
be a and b, respectively.

After pouring 1L from A to B, there is 3a
4 and b+ a

4 grams of salt in bowls A and B, respectively.

After pouring 1L from B to A, now there is 3a
4 +

b+ a
4

4 and 3
4 · (b+

a
4 ) grams of salt in bowls A

and B, respectively.

At equilibrium, the amount of salt in the two bowls do not change after pouring water back
and forth.
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Thus, a = 3a
4 +

b+ a
4

4 = 3a
4 + b

4 + a
16 , meaning that 3a = 4b.

Since a+ b = 147, we have a = (B) 84 .

14. Andy, Benjamin, Carl, David, Edward, and Frank sit in a circle. Andy and Benjamin must
sit together, and Carl and Edward cannot sit together. Seating arrangements are considered
distinct if one cannot be rotated to match the other. How many distinct seating arrangements
are possible?

(A) 6 (B) 20 (C) 24 (D) 72 (E) 120

proposed by: Jacob Lu

Solution: We proceed by complementary counting.

Group Andy and Benjamin as one block (with 2 orders). Then we arrange 5 objects: the AB-
block, Carl, David, Edward, Frank. In a circle (rotations equivalent), there are (5–1)! = 24
arrangements. Multiplying by 2 (orders of AB) gives 48 total arrangements.

Now, we find the number of arrangements where Carl and Edward sit together. Treat C and
E as a block (with 2 orders) along with the other 3 objects. These 4 objects can be arranged
in (4–1)! = 6 ways. So the number of arrangements with C and E adjacent is 6 · 2 · 2 = 24,
since we can swap CE and AB.

Therefore, the number of valid arrangements is 48–24 = (C) 24 .

15. If a, b, and c are real numbers such that one of them is double of another, find the smallest
possible value of a

b + b
c +

c
a .

(A) 2 (B) 2 +
√
2 (C) 2

√
3 (D) 3 (E) 1

2 + 2
√
2

proposed by: Zheng Wang

Solution: Without loss of generality, there are two possible cases: a = 2b and b = 2a.

If a = 2b, we have

2b

b
+

b

c
+

c

2b
= 2 +

b

c
+

c

2b

≥ 2 +
√
2,

where the last inequality comes from AM-GM. Equality can be achieved through a = 2, b = 1,
c =

√
2.

If b = 2a, we have

a

2a
+

2a

c
+

c

a
=

1

2
+

2a

c
+

c

a

≥ 1

2
+ 2

√
2,

where the last inequality comes from AM-GM. Equality can be achieved through a = 1, b = 2,
c =

√
2.

Since 1
2 + 2

√
2 < 2 +

√
2, the answer is (E)

1

2
+ 2

√
2 .
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16. Link repeatedly flips a fair coin until he gets tails, at which point he stops. If the nth flip lands
on heads, then he earns n additional rupees. Determine Link’s expected total rupees earned
from the game.

(A) 1 (B)
3

2
(C)

5

3
(D) 2 (E)

5

2

proposed by: Oscar Zhou

Solution: The k-th flip contributes k( 12 )
k rupees to the expected earning, so the answer is

∞∑
k=1

k

(
1

2

)k

=
1
2(

1− 1
2

)2 = (D) 2 .

17. A positive integer n is powerful if for any integers a, b, and c,

n | (a+ b)(b+ c)(c+ a)(a− b)(b− c)(c− a).

Compute the sum of all powerful integers.

(A) 7 (B) 12 (C) 28 (D) 60 (E) 72

proposed by: Leo Wu

Solution: Setting (a, b, c) = (1, 3, 5), (2, 3, 4), all powerful integers must divide gcd(3072, 420) =
12. We now show that 12 always divides the expression.

Rewrite the expression as (a2 − b2)(b2 − c2)(c2 − a2). Since x2 is can only be 0, 1 (mod 4),
by Pigeonhole, 2 of a2, b2, c2 will cover the same residue and 4 will divide their difference.
Similarly, since x2 can only be 0, 1 (mod 3), 2 of a2, b2, c2 will cover the same residue and 3
will divide their difference. Therefore a positive integer is powerful if and only if it divides 12.

The answer is 1 + 2 + 3 + 4 + 6 + 12 = (C) 28 .

18. The Aeldari had a legendary black and white flag of 2 meters wide that extendeds infinitely
to the right, where each region is twice the length of the previous. A reckless officer of theirs,
however, accidentally cut the flag in a single slash of his sword into a square with side length 2
meters. Shame! The original flag is shown below, with the pattern continuing infinitely both
near the flagpole and into the vastness of space. What is the area of the shaded region left on
the square flag?

(A)
5

3
(B) 2 (C)

23

12
(D)

9

4
(E)

5

2
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proposed by: Zheng Wang

Solution: Let the origin be the intersection of the line of symmetry of the flag and the cut.
Assume the flag extends to +∞ parallel to the x-axis.

Firstly, consider the triangle region with vertices (−2,−1), (−2, 1), and the origin. In this
region, every shaded region is to the right of a white region that has half its area. Thus, the
shaded region takes up 2/3 of the total area. The area of the shaded region is 2/3 · 2 = 4/3.

Now, consider the triangle region with vertices (0, 1), (−2, 1), and the origin. In this region,
every shaded region is above a white region that has double its area. Thus, the shaded region
takes up 1/3 of the total area. The area of the shaded region is 1/3 ·1 = 1/3. Since this region
appears twice in the area left of the cut, the total area of the shaded region is

4

3
+ 2 · 1

3
= (B) 2 .

19. There are 2 ≤ n ≤ 1000 bowling pins set up in a straight line. Alex and Ben take turns
removing k initially consecutive pins, where k is a proper divisor of n. The person who takes
the last pin wins. If Alex goes first, find the sum of all integers n for which Ben wins.

(A) 0 (B) 2 (C) 38 (D) 249999 (E) 500499

proposed by: Prince Zhang

Solution: For n = 2, Ben wins because Alex takes one pin and Ben takes the remaining pin.

For all n > 2, we claim that Alex wins. If n is even, Alex’s first move is to take the middle two
pins. If n is odd, Alex’s first move is to take the middle pin. In both cases, Alex’s has split the
bowling lines into two equal groups. Alex’s winning strategy is to copy whatever move Ben
plays in the other group. This way, Alex will remove the last pin.

Thus, the sum of all integers n for which Ben wins is (B) 2 .

20. Let p(x) represent the number x minus the sum of its digits. Let pk(x) be p(p(...p(p(x))...)),
where p is applied to x a total of k times. Given that 510 = 9765625, what is the value of
p2025(510)?

(A) 9635058 (B) 9667325 (C) 9691254 (D) 9711836 (E) 9751851

proposed by: Elaine Li

Solution: A number minus the sum of its digits is always divisible by 9. To prove this, write
the number as the sum of ak10

k. We see that ak · 10k − ak = ak(10
k − 1) and 9 | (10k − 1).

Among the answer choices, only A, C and E are divisible by 9. We see the sum of the digits
after each p(x) is at most 9 ·7, so the number is at least 510−2025 ·9 ·7 = 9638050, eliminating
option A. Also, the sum of the digits after each p(x) is at least 1 · 7, so the number is at most

510 − 2025 · 1 · 7 = 9751450, eliminating option E. Thus, the correct answer is (C) 9691254 .

21. Let ABC be a triangle such that AB = 7, BC = 24, CA = 25. Let D,E be points on the
angle bisector of ∠BAC such that BD is parallel to EC. If the midpoint of ED is the incenter
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of △ABC, what is AD? (the incenter is defined as the intersection of the angle bisectors of
△ABC)

(A)
35

3
(B) 12 (C)

16
√
3

3
(D)

15

2
(E)

60

7

proposed by: Christopher Li

Solution: Let F be incenter. Let AD intersect BC at G. Then

EG

GD
=

CG

BG
=

AC

AB
=

25

7
.

The inradius of ABC is 3. We can find AF = 5 and FG = 15
4 by length chasing in the triangle.

Let DG = x. Then DF = FE implies EA = x− 5
4 . From

25

7
=

EG

GD
=

x+ 15
2

x
,

we solve to get x = 35
12 . Thus,

AD = x+ 5 +
15

4
= (A)

35

3
.

22. The polynomial f(x) = x4 − x3 + x2 − x + 100 has roots r1, r2, r3, r4. Let the sequence sn
denote rn1 + rn2 + rn3 + rn4 . Find the last 3 digits of s9− s8+ s7− s6+ s5− s4+ s3− s2+ s1− s0.

(A) 000 (B) 167 (C) 343 (D) 625 (E) 797

proposed by: Elaine Li

Solution: We use the idea that if x4 − x3 + x2 − x+ 100 = 0 for roots r1, r2, r3, r4, then

(r41 + r42 + r43 + r44)− (r31 + r32 + r33 + r34) + (r21 + r22 + r23 + r24)− (r1 + r2 + r3 + r4) + 100 · 4
= s4 − s3 + s2 − s1 + 100 · 4
= 0.

Our goal is to transform f(x) into something that looks like x9 − x8 + x7 + x6 + · · · . Consider
the polynomial

p(x) = x5f(x)− 99xf(x)− 100f(x)

= (x9 − x8 + x7 − x6 + 100x5)− 99(x5 − x4 + x3 − x2 + 2025x)− 100(x4 − x3 + x2 − x+ 100)

= x9 − x8 + x7 − x6 + x5 − x4 + x3 − x2 − 100 · 98x− 1002.

For each root r, f(r) = 0, so p(r) = 0. Thus,

s9 − s8 + s7 − s6 + s5 − s4 + s3 − s2 − 9800s1 − 10000 = 0

so we have

s9 − s8 + s7 − s6 + s5 − s4 + s3 − s2 + s1 − s0 = 9800s1 + 10000 + s1 − s0

We see that s0 = 1 + 1 + 1 + 1 = 4, and by Vieta’s, s1 = r1 + r2 + r3 + r4 = 1. Thus, the

expression is equal to 9800+10000+1−4 = 19801−4 = 19797, and last 3 digits are (E) 797 .
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23. Emma just opened a flower shop and is tracking her hourly sales. She notices an interesting
pattern: from one hour to the next starting from hour 1, her sales never drop by more than 1
flower. Suppose that in the 6th hour she sells exactly 4 flowers, how many different possible
sales sequences could Emma have had during the first 6 hours?

(A) 210 (B) 1638 (C) 1820 (D) 3640 (E) 4368

proposed by: Wendy Xia

Solution: Let ai denote the sales in each hour, define bi = ai + i with bi ≤ bi+1 and bi ≥ i.
We know that b1 = 1, b6 = 10. Consider mapping every valid {bi} sequence to a lattice path
(consisting of only rights and ups) from (1, 1) to (6, 10) whose last point on the line x = i is
(i, bi), and vice versa. The problem is then equivalent to counting the lattice paths from (1, 1)
to (6, 10) that never goes below the diagonal from (2, 1) to (6, 5).

There is a total of
(
14
5

)
paths and we exclude the invalid ones. We claim that there is a

bijection between paths going below the y = x − 1 diagonal at some point and paths from
(1, 1) to (12, 4).

Proof: Consider an invalid path, let (x, x − 2) be the first point where it goes below the
diagonal. To reach (6, 10) from there requires (6−x) right steps and (12−x) up steps. Reflect
the portion of the path after this point across y = x− 2. This swaps the number of right and
up steps, so the end point becomes (x + (12 − x), x − 2 + (6 − x)) = (12, 4). Conversely, any
path to (12, 4) necessarily crosses the diagonal, and reflecting it back at the first crossing point
recovers the original invalid path. Thus, the mapping is reversible, and we obtain a bijection
between invalid paths and paths from the origin to (12, 4).

This yields a total of
(
16
5

)
invalid paths. Finally, the answer is

(
14
5

)
−
(
14
3

)
= (B) 1638 .

24. Let S be the sum of all distinct elements in the set{⌊
12

101

⌋
,

⌊
22

101

⌋
,

⌊
32

101

⌋
, . . . ,

⌊
1012

101

⌋}
.

What is the remainder when S is divided by 101?

(A) 1 (B) 50 (C) 51 (D) 69 (E) 70

proposed by: Christopher Li

Solution: In the sequence 12

101 ,
22

101 , . . .
502

101 , the value increases by at most 1. Therefore, the

floors are integers 0 to 24. After 502

101 , the value increases by at least 1, so all the floors are

distinct. We know 1012

101 = 101 ≡ 0 (mod 101), so we just need to find the sum from ⌊ 512

101⌋ to
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⌊ 1002

101 ⌋. Since ⌊x⌋ = x− {x}, we have

100∑
n=51

⌊
n2

101

⌋
=

100∑
n=51

n2

101
−

100∑
n=51

{
n2

101

}

=
100·101·201

6 − 50·51·101
6

101
−

100∑
n=51

{
n2

101

}

= 2925−
100∑

n=51

{
n2

101

}
.

Since 101 is prime, there are 50 quadratic residues mod 101, and we know {i2}100i=51 covers every
quadratic residue. Furthermore, by Fermat’s Christmas Theorem, −1 is a quadratic residue,
so if a is a quadratic residue, −a is also a quadratic residue. Thus, we can pair up the 50
quadratic residues such that each pair sums to 101. This gives us

100∑
n=51

{
n2

101

}
=

25 · 101
101

= 25.

The final sum is
24 · 25

2
+ 2925− 25 ≡ (D) 69 (mod 101).

25. Blackbeard the pirate has buried his treasure somewhere in the coordinate plane! There’s a
1
2 chance that the treasure is at (0, 0), a 1

4 chance that it’s at (0, 1), and in general a 2−n−1

chance that it’s at (0, n) for any positive integer n. Luffy starts at the point (−10, 0) and can
only move either up or right by 1 unit on each step. What is the expected number of paths
that Luffy can take to reach the treasure?

(A) 167 (B) 343 (C) 864 (D) 975 (E) 1024

proposed by: Daniel Chen

Solution: If the treasure is at (0, n), there are
(
10+n
10

)
paths to it. Thus, the expected number

of paths is

∞∑
n=0

(
10 + n

10

)
1

2n+1
=

1

2

∞∑
n=0

(
10 + n

10

)(
1

2

)n

=
1

2
· 1

(1− 1
2 )

11

= (E) 1024 .
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